

Computerkicker- Se -17042008- Version 0.9 - Seite 1

Computerkicker: Abschätzung des erforderlichen Antriebsdrehmoments für die Rotation der Stange

Zur Abschätzung der notwendigen Leistungsdaten des Antriebs der Rotation der Stange werden folgende Überlegungen angestellt:

- Die Rotationsbewegung (ROT) einer Kickerstange mit Spielern ist unabhängig zur translatorischen Bewegung (TRANS) der Kickerstange
- Als worst-case Fall ist anzunehmen, dass der Kickerball gerade von einer gegenerischen Spielfigur der Kickerstange unmittelbar gegenüber mit maximaler Geschwindigkeit geradlinig geschlagen wurde.
 - Es bleibt also nur die Zeit, die der Ball benötigt um die Distanz zweier Kickerstangen bei maximaler Ballgeschwindigkeit zurückzulegen, als Reaktionszeit um mit der eigenen Spielerfigur den Ball zurückzuschlagen.
 - Dazu muss im worst-case die Stange in Rotationsrichtung mit dem Spieler ausholen und dann so zurückkickern, dass der Ball mit maximaler Geschwindigkeit in nun entgegengesetzter Richtung den eigenen Spieler verlässt.
- Alle Bewegungen werden in erster Näherung als gleichmäßig beschleunigt angenommen.
- Ein auftretender Winkelbeschleunigungsverlaufwechsel sei über der Zeit stetig differenzierbar. D.h. der Verlauf des Rucks (Ableitung der Winkelbeschleunigung) sollte stetig sein.

Grundgrößen:

Größe		Wert/Beziehung	
V _{ballmax}	m/s	12	Maximal auftretende Ballgeschwindigkeit
S _{max}	m	0,35	Stangenabstand
d	m	0,016	Durchmesser der Stange
J _{stange}	kg m ²	$= m_{\text{stange}}/8 \text{ *d}^2$	Massenträgheitsmoment Stange
J_{motrot}	kg m ²		Massenträgheitsmoment Motor der Rotationsachse
J	kg m ²	J _{stange} + J _{motrot}	Summe der Massenträgheitsmomente um Rotationsachse
r	m	0,070	Abstand Fuss des Spielers zur Stangendrehachse
V _{ist}	m/s		tatsächliche Ballgeschwindigkeit zum Zeitpunkt t
t	S		Zeit
t_0	S		Abschlagszeitpunkt
α	rad / s^2	$= M_{rot}/J$	Winkelbeschleunigung der Stange
ω	rad/s	$= \alpha * t$	Winkelgeschwindigkeit der Stange
φ	rad	$= \frac{1}{2} * \alpha * t^2$	Auslenkungswinkel der Stange 0 Spieler in Ruhestellung,
			Füsse nach unten $\pi/2$ Füsse waagrecht nach hinten, zum
			ausholen
M_{rot}	Nm		Drehmoment des Motors
m _{stange}	kg	2	Masse der Stange

Nebenrechnung:

$$t = \sqrt{\frac{2 * \varphi}{\alpha}} = \sqrt{\frac{2 * J * \varphi}{M_{rot}}}$$

- minimale Zeit bis zum Abschlag des Balls:

(a)
$$t_{ball} = \frac{s_{max}}{v_{ball max}}$$

- diese minimale Zeit t_{ball} steht zur Verfügung um mit dem Spieler so auszuholen und zu schlagen, dass zu diesem Zeitpunktes des Schusses die Bahngeschwindigkeit des Fusses des Spielers die maximale Ballgeschwindigkeit $v_{ballmax}$ besitzt und der Fuss des Spielers bei 0 [rad] Auslenkung in diesem Zeitpunkt den Ball trifft.
 - Ausholen und schlagen bedeutet:
 - (b) Spieler nach hinten bis zur Auslenkung φ_a/2 beschleunigen und
 - (c)Spieler von $\,\phi_a/2$ bis Auslenkung ϕ_a auf Winkelgeschindigkeit $\omega{=}0$ abbremsen danach
 - (d) Spieler von φ_a auf 0 [rad] drehend so beschleunigen, dass bei 0 [rad] der Fuss des Spielers die Bahngeschwindigkeit v_{ballmax} besitzt.

(b) (c)
$$t_1 = \sqrt{\frac{2 * J * (\varphi_a / 2)}{M_{rot}}}$$

$$t_2 = \sqrt{\frac{2 * J * \varphi_a}{M_{ref}}}$$

(e)
$$t_{ball} = \frac{s_{max}}{v_{ball \, max}} = 2 * t_1 + t_2 = 2 * \sqrt{\frac{J * \varphi_a}{M_{rot}}} + \sqrt{\frac{2 * J * \varphi_a}{M_{rot}}}$$

(f)
$$v_{ball \max} = \omega_{ball \max} * r = \alpha * t_{ball} * r = \frac{M_{rot} * t_{ball} * r}{J}$$

(a) und (f)
$$t_{ball} = \frac{s_{\text{max}}}{v_{ball \, \text{max}}} = \frac{v_{ball \, \text{max}} * J}{M_{rot} * r}$$

(g) aufgelöst nach:
$$M_{rot} = \frac{v_{ball \max}^2 * J}{s_{\max} * r}$$

$$\varphi_a = \frac{s_{\text{max}}}{r^*(6+4\sqrt{2})}$$
 (e) nach φ_a aufgelöst mit (g) eingesetzt ergibt:

Nebenrechnung dazu:

$$\frac{s_{\max}}{v_{ball \max}} = 2 * \sqrt{\frac{J * \varphi_a}{M_{rot}}} + \sqrt{\frac{2 * J * \varphi_a}{M_{rot}}} = \frac{(2 * \sqrt{J} + \sqrt{2 * J}) * \sqrt{\varphi_a}}{\sqrt{M_{rot}}}$$

$$\frac{s_{\text{max}}^2}{v_{ball \text{ max}}^2} = \frac{(2*\sqrt{J} + \sqrt{2*J})^2 * \varphi_a}{M_{rot}} = \frac{(6+4\sqrt{2})*J*\varphi_a}{M_{rot}}$$

$$\varphi_a = \frac{M_{rot} * s_{max}^2}{(6 + 4\sqrt{2}) * J * v_{ball \, max}^2} = \frac{s_{max}}{r * (6 + 4\sqrt{2})}$$
 (g) eingesetzt für M_{rot}

Beispielrechnung mit Werten:

Tischkickerstange angetrieben durch Synchromotor für Rotation der Stange

Winkelgeschwindigkeit [rad/s] nach tball	2,617993878
Winkelbeschleunigung [ras/s^2] = const	1,22448980E+04
Masse Stange [kg]	2
Durchmesser Stange [mm]	16
Massenträgheitmoment Stange [kg*m^2]	6,4000000E-05
Massenträgheitmoment Motor [kg*m^2]	1,2000000E-04
Maximale Schlaggeschwindigkeit = Max Ballgeschw. beim Abschlag [m/s]	12
Drehmoment soll Motor [N*m]	2,253061224
Abstand Fuss des Spielers zur Drehachse in [mm]	80
Abstand zweier Stangen [mm]	147
Zeit bei max. Ballgeschwindigkeit zwischen 2 Stangen [s]	0,01225000
Auslenkung Winkel phi in [winkelgrad]	9,031681498
erforderliches Drehmoment M um vballmax rechtzeitig zu erreichen [N*m]	2,253061224